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Abstract

Cell counting in neuroscience is a routine
method of utmost importance to support
descriptive in vivo findings with quantitative
data on the cellular level. Although known to
be error- and bias-prone, manual cell counting
of histological stained brain slices remains the
gold standard in the field. While the manual
approach is limited to small regions-of-interest
in the brain, automated tools are needed to
up-scale translational approaches and generate
whole mouse brain counts in an atlas frame-
work. Our goal was to develop an algorithm
which requires no pre-training such as machine
learning algorithms, only minimal user input,
and adjustable variables to obtain reliable cell
counting results for stitched mouse brain slices
registered to a common atlas such as the Allen
Mouse Brain atlas. We adapted filter banks
to extract the maxima from round-shaped
cell nuclei and various cell structures. In a

qualitative as well as quantitative comparison
to other tools and two expert raters, AIDAhisto
provides accurate and fast results for cell nuclei
as well as immunohistochemical stainings of
various types of cells in the mouse brain.

1 Introduction

Understanding brain diseases on a cellular level
requires a detailed mapping of histopathology
to brain function. Fundamental to this correla-
tion is the analysis of multiple cell types and cell
markers by immunohistochemistry (”immunos-
tainings”). Engineered fluorescence-coupled an-
tibodies to detect specific proteins are still the
gold standard to visualize and quantify processes
such as brain inflammation, degeneration, neu-
rogenesis, and axonal remodeling. Immunostain-
ings are performed using ultra-thin (10-50 pm)
brain tissue slices and imaged with fluorescence



microscopes (5). In order to acquire a whole
brain coverage, most commercial microscopes to-
date are equipped with a motorized stage for
x,y,z-movements as well as software and stitching
algorithms ((6)). Other systems are available for
automated mouse brain processing such as serial
two-photon tomography (STPT) ((24)) or brain
clearing and whole brain lightsheet microscopy
((10)). A key element of that approach is the
quantitative cellular analysis within a reference
atlas to increase the comparability and transfer-
ability of data obtained from different studies.

Despite the recent progress in digital atlasing
((14)) and related automated cell counting tools
((17)), most studies still rely on the analysis of
a minimal number of brain slices where a small,
manually-defined brain region is imaged and cell
counting is performed in error-prone and tedious
manual interventions. Both steps, the registra-
tion of the experimental tissue sample with a
standardized tissue atlas and the quantification
of tissue markers are non-trivial and prone to
user-errors ((11)). Thus, for correlations and for
revealing causal relationships between a pathol-
ogy in a particular brain region and a measured
behaviour, the manual approach is inappropri-
ate. Although software and basic image process-
ing algorithms are available to solve mathemati-
cally the cell detection and atlas registration (see
Supplement Table 1), there are several practical
challenges: The registration of whole brain mi-
croscopy data with a 2D segmented mouse brain
atlas should account for the deformations in-
duced by tissue preparation and (in part) image
acquisition. Secondly, cell counting on histolog-
ical sections, where a certain protein is targeted
with fluorophore-coupled antibodies (immunos-
taining) requires an algorithm robust enough to
differentiate background (usually from unspe-
cific antibody binding) and real signal. Sim-

ple threshold-based approaches to identify local
maxima, as it would be sufficient for cell nuclei,
will not work in such a scenario. Furthermore,
conventional linear and non-linear atlas registra-
tion approaches cannot merge such diverse im-
ages with a simple metric in terms of informa-
tion content, size, and shape without losing map-
ping precision. So far, other tools have been
optimized only for healthy mouse brain tissue
but not for disease models, such as stroke, in
which the analysis is challenged by additional
tissue changes due to atrophy, swelling and an in-
creased autofluorescence due to dead cells ((12)).
Consequently, an efficient, unbiased, scalable,
and automated analysis, which can be applied
with minimal user input, experience in program-
ming, and image post-processing, is mandatory.
Here, we present an atlas-based imaging
data analysis tool for mouse brain histology
(AIDAhisto) that features a simple protocol
for landmark-correspondence registration of se-
lected whole-brain slice microscopy with the
Allen Mouse Bran Atlas, ARA, ((18) and (22))
and a two-step cell detection algorithm using the
cell nuclei segmentation as a seed for cell count-
ing. We developed AIDAhisto as an open-source
script for Python and Matlab and evaluated the
cell detection accuracy for cell nuclei and im-
munostainings of astrocytes and immune cells
against other established tools.

2 Material & Methods

2.1 Experimental setup

To preserve brain tissue for imaging and sub-
sequent analysis, adult C57/BL6 mice (The
Jackson Laboratory) were intracardially per-
fused with 20 mL of phosphate buffered saline
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Figure 1: AIDAhisto enables an atlas-based quantitative analysis of immunohistochemistry on whole brain
tissue slices. (A) Representative microscopy of Ibal (red), autofluorescence (green) and DAPI (blue) with
registered ARA plate (white lines). Inserts show accuracy of registration for selected white matter areas.
Segmented cells are shown as white dots. (B) The atlas slice which best corresponds to the experimental
section was registered using a point-based registration. The corresponding points between the input image
and the atlas are marked by yellow dots. (C) Representative Ibal staining (red) for which the cell nuclei
validation was applied: Ibal cell positions whose cell nucleus position could not be assigned (yellow dots
without arrows) were deleted, whereas Ibal positions with cell nuclei persist as valid results (white dots with
arrows). (D) As a result, the cell number is expressed as cells counted per brain regions (displayed as an

example as bar graph).

(PBS, Merck) followed by 20 ml of 4% phosphate
buffered formaldehyde (PFA, Roti-Histofix, Carl
Roth, #P087.3). After perfusion, the spinal
cords and brains were isolated and transferred
for 24 hours (h) to a post-fixative solution con-
taining 4% PFA at 4°C. For longterm storage
the brains were stored in 30% Sucrose solution
at 4°C. After post-fixation 20 pm coronal tissue
sections were prepared using a microtome with
freezing stage and the slices were stored at
-20°C.

Fixed tissue was immunostained following a

standard protocol. The frozen sections were
thawed for 10 minutes (min) at room tempera-
ture (RT) und pre-treated with sodium citrate
(10 mM in PBS) for 20 min at 80°C. Afterwards
the sections were washed with PBS. The sec-
tions were incubated for 1 h at RT in blocking
solution (BS; PBS + 0.25% Triton X-100 + 5%
goat serum), followed by incubation with one
of the following antibodies: rabbit anti-DCX
(1:50; Santa Cruz #sc-8066), rabbit anti-GFAP
(1:500; DAKO #7Z0334), rabbit anti-Ibal (1:200;
R&D #AF2535), MAP2 (1:200 Cell Signaling



#4542), and mouse anti-NeuN (1:200; Merck
#MAB377) at 4°C overnight (O/N). After
washing with PBS, the sections were incubated
with the secondary antibodies donkey anti
rabbit-Cy3 (1:500; Jackson Immuno Research
#711-165-152), donkey anti rabbit-Alexa Fluor
488 (1:500; Life Technologies #A21441) or don-
key anti mouse-Cy5 (1:500; Jackson Immuno
Research #715-175-151) diluted in BS for 2 h
at RT. Cell nuclei were stained using DAPI
for 5 min after the secondary antibodies were
rinsed off. The sections were washed with PBS,
covered with Fluoromount G (Thermo Fisher),
dried O/N at RT, and stored at 4°C. Whole
brain slice stitch/merge images were acquired
with the fluorescence microscopes Keyence
BC8000 (10x objective) or Life Tech Evos (20x
objective).

For the quantitative evaluation, the prefrontal
cortex of two sets of four mice was labeled with
Ibal/DAPI; and GFAP/DAPIq, respectively.
For each of the 16 datasets, we randomly
sub-dived whole-brain slices into four ROIs
using ImageJ (ImageJ v1.52, U. S. National
Institutes of Health, Bethesda, Maryland, USA)
(((30))), which led to an overall dataset of
N=64 samples. The samples have different sizes
in x-y-direction and varying fluorescence illu-
minations. The ROIs were manually analyzed
by blinded and independent experts. They
tagged cell nuclei and cells for both stainings,
Ibal/DAPI and GFAP/DAPI, using ImageJ by
visual inspection of the unmodified fluorescence
microscopy images. The cell positions were
saved for comparison. Only cells that were
tagged by both were defined as valid (true)
cells in order to increase the requirements for
automatic classification ((9)).

2.2 Atlas Registration & Automatic
cell detection

A detailed step-by-step procedure including rec-
ommendations to install and run AIDAhisto can
be found in the manual (Supplementary Mate-
rial). The code, example microscopy files and
the mouse brain atlas is available on Github.
In our example, the Allen Mouse Brain Atlas
(ARA), 2004 Allen Institute for Brain Science,
available from API was used. Any other atlas or
manually drawn region-of-interest (saved as bi-
nary image) will work as well. In the following
example, a simple landmark-based registration
in ImageJ was used to register the microscopy
image with the atlas. Notably, the registration
will work only for 2D-matching slices. Any addi-
tional angle, e.g. induced by improper brain cut-
ting, needs to be compensated during the regis-
tration procedure. For such process, we recom-
mend QuickNII and BigStitcher which support
multi-angle adjustments.

Initially, the atlas plane that relates to the mi-
croscopic image was manually extracted from
the coronal ARA spaced at 10 pm (Fig.1 (A)).
The subsequent transformation between the at-
las as a source and the brain slice as a target
image was conducted by a landmark based reg-
istration. The landmarks were manually gener-
ated with ImageJ and transferred to the plugin
Landmark Correspondences (Fig.1 (B)) ((28)),
which approximated a transformation between
source and target image using the method of
moving-least-squares.  Although the resulting
transformation was rendered by a 16-pixel mesh
network, the transformed pixels of the trans-
formed atlas have not been interpolated. This
way, a sufficient registration was guaranteed
whereas the original brain label association (in
this case the grey values) remains.
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Upon successful completion of the registration
procedure, the application of AIDAhisto pro-
vides a freely available cell-counting tool written
in Python 3.6 as well as Matlab (Matlab Version
R2018a, The MathWorks Inc., Natick, USA).
The software is premised on commonly used al-
gorithm initially used for nuclei detection in dig-
ital (in-vitro) microscopic images ((4)). With
extensive modification, AIDAhisto now enables
the quantitative analysis of brain tissue slices
for widely-used stainings e.g., DAPI, GFAP and
Ibal (Fig. 1 (A,C)) in high-resolution images
within a short period of time. In order to start
AIDAMhisto, the microscopy file, the transformed
ARA and the mean cell size o are used as min-
imal input and the data is processed with the
following steps.

First, two filter sets are used with the diam-
eter proportional to o for classifying (cellular)
textures as perviously described (33). Whereas
the rotationally invariant Schmid Filter Bank (S)
suits perfectly for detecting round shapes, the
Leung-Malik Filter Bank (LM) is not rotation-
ally invariant and identifies more complex non-
circular geometries ((29), (19)). Since, S com-
prises 13 isotropic filters and the LM set a total
of 18 filters with 6 orientations and three scales,
the convolution with the input image results in
a stack of smoothed images. The average inten-
sities of all images in the stack represent local
extremas. Secondly, an iterative approach ((25))
is used to determine a pixel-wise x threshold T’
for the image I as follows

-T ifx>T
Iwy=4 "7
T, otherwise.

(1)
Thirdly, a grayscale dilation expands the shapes
of the resulting image and applies an array with
a logical image of a solid circle of size R = |o/2]|

to identify the x- and y-positions of the local
extremas. The detected extremas represent the
calculated cell centroid. Finally, the detected
cell position can be validated by a previously
defined cell position pattern. In order to reduce
the false positive rate, the identified cell nuclei
(DAPI) are used as a reference for the cell
detection in the immunostaining channels. The
assignment is made in the radius w- R with scal-
ing w using a k-Nearest-Neighbour algorithm
with k equal to one. Antibody-labeled cells
whose cell nucleus position can not be assigned
in the direct neighborhood are automatically
deleted. In the last step, every cell and nuclei
count and the position are iteratively assigned
with the respective atlas region or any other
manually defined regions of interest (ROI) used
as input. The results are stored as text files
containing x,y-positions of each identified cell
and the cell count per brain region (ROI),
respectively. The output is also stored as an
image where the identified cell positions are
marked as one pixel each, which can be used
for example to plot the cell number per brain
region (Fig. 1 (D)).

2.3 Comparison to available cell-

counting methods

We compared the performance of AIDAhisto to
four freely available tools for counting cells: In-
cremental Cell Search (ICS) ((21)), QuickCount
(QC) ((32)), QuPath (QP) ((2)) and ILASTIK
(IL) ((31)). To validate the number of identified
cells and related cell positions, two independent
investigators M7 and Ms manually counted three
cell lineages (DAPI, GFAP and Ibal) in N = 64
samples. The results of M; and My were com-
pared to each other and the average of both was



used as a reference to determine the consistency
with the automatic cell count approaches. Sta-
tistical analysis with a log-transformed Bland &
Altmann plots enabled the evaluation of individ-
ual deviations between the measurement meth-
ods taking into account the distortion and vari-
ance of the data ((3)). The logarithmic transfor-
mation was chosen to improve the comparison
of the data as it enables a more uniform scat-
tering. In a pairwise comparison of the number
of identified cells, the limits of agreement (LoA)
should lie in 95% of the values, where SD de-
notes the standard deviation of the differences
d + 2- SD. Moreover, the coefficient of variation
(CV) is represented by the ratio of the SD to the
mean.

A comparison of the absolute cell numbers, how-
ever, would be insufficient to judge the relia-
bility of the cell counting algorithm. There-
fore, the cell positions selected by the two man-
ual raters were also used as classifiers. The
classiﬁersl;inary answer is represented by the
manually marked cells, which maps to one of
two states: Either both investigators tagged the
same cell (true) or one investigator tagged a cell
but the other not (false). The subsequent evalu-
ation was adapted from previous studies ((20)).
Briefly, an automatically marked cell is labelled
as true positive (TP) or true negative (TN) if
the detected result lies next to a true or a false
cell within a circle radius r. Otherwise the de-
tected results are labeled as false positive (FP)
or as false negative (FN). The results have been
summarized in a confusion matrix, with correct
classification results on the major diagonal and
faulty results in the secondary diagonal. Based
on that matrix, we determined the accuracy by
computing the F{-Score.

Additionally, in order to quantify and as-
sess whether automatic methods have sufficient

matches to the manual observations, the calcu-
lation of Cohen’s kappa x ((8)) was applied.

Po — Pc
11— DPe (2>
That equation enables the examination of the
agreement of two methods p, in consideration
of a randomly expected correspondence p.. An

advantage is that x can be graded using the pre-
viously provided categories (Tab. 1) ((1)).

K =

3 Results

The following evaluations are based on the
implementation in Matlab (Matlab Version
R2018a), but we also offer AIDAhisto in Python
3.6, which provides comparable results.

3.1 Cell counting performance

In a first step, we compared the agreement be-
tween both investigators to proof the reliability
of the manual cell detection (Fig. 2 (A)). De-
spite the high correlation of 72 = 0.91 and low
RMSE of 0.31, the LoA of M; was on average
35% higher as the result of investigator Ms. The
counting results of GFAP/DAPIg AIDAhisto
and GFAP/DAPI¢ ICS also had a very low dis-
persion around the bisecting line in the scat-

Table 1: Categories of Altmann for the interpre-
tation of Cohens’s kappa x are used to classify the
detection accuracy ((1))

Range of K Agreement
0.81 - 1.00  Very good
0.61-0.80  Good

0.41 - 0.60  Moderate

0.21-0.40  Fair

0.00 - 0.20  Poor



ter plots and around zero in the Bland-Altman
plots, whereas the approaches GFAP QC, GFAP
QP and GFAP IL showed large deviations com-
pared to DAPIg QC, DAPIg QP, DAPIg IL
(Fig. 2 (B). Similar patterns were observed
for the GFAP/DAPI; examination, though far
smaller deviations were determined for the scat-
ter of GFAP/DAPI; IL (Fig. 2 (C).

Detailed results for the individual measurements
are given in table 2. Here, AIDAhisto achieved a
correlation of 0.92 and ICS of 0.79 in comparison
to the average of both investigators M; /5. The
other approaches presented lower correlations.
As expected, further statistical analyses revealed
deviations in the LoA ranging from AIDAhisto
with 0.58 to QC with 1.9. The LoA of AIDAhisto
is less than the LoA of 0.61 between M; and
Ms. Furthermore, the log-retransformed data
obtained by AIDAhisto were only 2% larger than
the average cell counting results of both investi-
gators.

3.2 Accuracy of cell positions

The investigators were also regarded as classi-
fiers, with binary answers representing true or
false cells. As there was no difference in the cell
nuclei counting (DAPIg) in the GFAP and Ibal
immunostainings (Figure 2), they were merged
to a single DAPI group. Additionally, as the
cell counting results of ICS were very similar
to AIDAhisto in the previous examination, we
next assessed whether if tagged cells were either
correct or false cells with respect to the pre-set
classes for all three cell lineages (DAPI, GFAP,
Ibal). The confusion matrices contain the num-
ber of observations in the four possible combi-
nations of automatically and manually marked
cells (Fig. 3). True positive (TP) and true neg-
ative (TN) represent the correct classification

on the main diagonal of the confusion matrix.
The TP ratios of AIDAhisto were higher (74.4-
88.5%) compared to ICS (20.7-75.1%), whereas
ICS performed slightly better in detecting TN
cells (96.4-98.6% vs. 90.8-97.4%). Furthermore,
when the algorithm returned a cell position clas-
sified as incorrect, it was counted as false positive
(FP), and a not automatically detected cell po-
sition was classified as false negative (FN). The
FP ratio of AIDAhisto was lower for cell nuclei,
as well as the GFAP and Ibal immunostainings
(11.5-25.6% vs. 24.9-79.3%), whereas ICS per-
formed slightly better in the FN ratio (1.4-3.6%
vs. 2.6-9.2%). Collectively, the F;i-Score was
used to characterize the overall classification ac-
curacy for each matrix. While the Fi-Score of
AIDAhisto was not different for cell nuclei and
immunostainings (82.33-88.78%), ICS reached
a high Fj-Score only for cell nuclei (82.01%)
and lower Fj-Score for immunostainings (45.45-
72.39%).

In addition to the F{-Score, we calculated the
Cohen’s Kappa x, that measures the difference
between the proportion of real agreement and
the proportion of agreement that would be ex-
pected by pure coincidence (Fig. 4). The DAPI
cell nuclei positions of both approaches were
comparable and the median of both lies in the
the second category marked as "good” (Fig. 4
(A)). For the GFAP and Ibal immunostainings,
the resulting quality category was found to be
different. The median of the k values decreased
to a category marked as "Fair” for GFAP (Fig.
4 (B)) and as "Poor” (Fig. 4 (C)) for Ibal,
whereas the median of AIDAhisto remained
stable in the category marked as ” Good”. Thus,
the ICS results were in less agreement with
both investigators compared to the AIDAhisto
results.

In all previous measures, the cell nuclei de-



Table 2: Quantitative comparison of the five tested cell counting approaches A;_5 with the average results
of the two investigators M /5 using squared Pearson correlation Value r2, root mean square error (RMSE),
limits of agreement (LoA), difference d with standard deviation SD, and the coefficient of variation (CV)

Software Acronym RMSE 7?2 LoA d+2-SD Cv

Manual - 0.31 0.91 0.61 0.30 +0.91/-0.31 6.9 %
ATDAMhisto AIDAhisto 0.30 0.92 0.58 0.03 40.55/-0.61 6.6 %
Incremental Cell Search ICS 0.53 0.79 1.0 0.05+0.98/-1.1 12 %
QuickCount QC 0.73 0.18 1.9  0.25 +2.2/-1.7 21 %
QuPath QP 046 026 17 097 42.6/-0.71 17 %
ILASTIK 1L 0.70 061 14 0.38 +1.0/- 1.8 16 %

tection was more accurate compared to the
immunostainings. Therefore, the DAPI results
were used as reference data to correct the
immunostaining results. Based on the assump-
tion that the filter detects the immunostaining
in a certain range next to the cell nuclei,
we implemented that feature in AIDAhisto
which increased the Fp-Score by 9.88% (Fig.
4D). Here, both investigators counted N=4
DAPI/Ibal samples again and were recruited
as classified as described above. As plotted
in the confusion matrix (Fig. 4D), the TP
and TN were increased and FP and FN de-
creased by the additional cell position validation.

3.3 Qualitative examples

Next to astroglia and immune cells, we tested
AIDAhisto for other experiments (Fig. 5).
We achieved qualitatively good results for the
detection of neuroblasts expressing doublecortin
(DCX), the neuronal nuclei marker NeuN on
brain and spinal cord slices as well as detection
of viral tracing with tdTomato expressed in layer
5 pyramidal neurons in the mouse brain. These
examples show that the AIDAhisto counting
algorithm can be applied to a broad range of

neuroscience applications.

4 Discussion

A detailed mapping of histopathology to brain
function plays a major role in understanding
brain diseases on a cellular level. A key el-
ement of that approach is a quantitative cel-
lular analysis within a reference atlas to in-
crease the comparability and transferability of
different studies. Currently, tools for quanti-
fying cells in histological stainings (e.g., Nissl
or Hematoxilyn/Eosin) or immunohistochemical
stainings were optimized for a particular fea-
ture, e.g., cell stainings or atlas-based analysis of
healthy mouse brain tissue (Supplementary Ma-
terial, Table 1). With AIDAhisto, we developed
and validated a cell counting tool that enables
a quantitative analysis of 2D whole-brain mouse
preparations with respect to the provided struc-
tures of the Allen Mouse Brain Reference Atlas
((18) and (22)). Using an appropriate 3D mouse
brain atlas provides in-depth characterization of
brain regions across modalities and histology-to-
behavior correlations. While for in-vivo imag-
ing, such as magnetic resonance imaging (MRI),
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Figure 2: Comparison of the manual cell counting (manual rater My and Msz) and the automated cell
counting tools Aj_5: AIDAhisto (AIDAL), Incremental Cell Search (ICS), QuickCount (QC), QuPath
(QP), and ILASTIK (IL). The counting results based on N=64 samples were subdivided into the stainings
Ibal/DAPI; and GFAP/DAPIg. The results are shown as scatter plots (upper row) with bisecting (dashed
line) and regression lines (solid line) as well as squared Pearson Correlation Value r? and Root Mean Square
Error (RMSE). The log-transformed Bland-Altman plots (bottom row) contain the limits of agreement
(LoA) at +£1.96SD and coefficient of variation (CV). The LoA of 0.61 is the statistical measure of uncertainty
between both investigators My and My, which vary with a difference of d = 0.3 (£0.91/ — 0.31). Compared
to the average of both investigator My 3 (A), the automated assessments Aj_5 (B and C) show striking
differences for both staining groups. In both cases, the results of each individual process should be as close
as possible to the solid line. Especially the blue and red marked triangles and circles for AIDAh and ICS
fulfill this criterion. For reasons of clarity, the quantitative results are listed in Table 2.

brain atlases are widely used ((23)), the histo-
logical validation is performed by delineating the
specific brain regions of interest in a manual and
difficult to reproduce approach ((13)). Different
to the in-vivo situation ((23)), the registration of
ex-vivo histology with the ARA requires a non-
linear registration to match the strong tissue de-
formation induced by ex-vivo tissue processing.
Usually, tissue cryosectioning and handling dur-

ing histology induce compression and /or stretch-
ing, which prevent a direct overlay of the mi-
croscopy and the atlas. Previous approaches
used principle component analysis and other al-
gorithms to detect the tissue border zone and
generate a mesh for non-linear registration ((12)
and (17)) (Supplementary Material, Table 1).
However, to our knowledge there is no fully au-
tomated algorithm available and we found such
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Figure 3: Confusion matrices with correct classification results in the main diagonal, incorrect results in
the secondary diagonal. ICS and AIDAhisto show nearly comparable results for the DAPI samples with

F1-Scores of 82.01% and 88.78% (A). In contrast, fo

r the other cell lineages the F1-Score of ICS decreased

because the FP hardly increased from 41.8% for GFAP (B) up to 79.3% for Ibal (C). The F;-Score of
AIDAhisto only slightly decreased and remained stable for each cell lineage.

approaches to work well for mouse brain tissue
from healthy mice but in case of brain lesions,
a different approach is needed ((16)). Here, the
association between imaging data and atlas re-
gions is based on a simple and fast landmark-
based registration tool that is implemented in
ImageJ ((27)) and thus allows a straightforward
and intuitive operation. The manual registration
depends on the correct choice of landmarks and
is fast and accurate when performed by an ex-
perienced user. Notably, that procedure should
be applied for matching slides (histology-atlas)
only. If one image is tilted, e.g. if there is
an additional skewed angle from the brain sec-

tioning, that needs to be corrected with other
tools. The subsequent cell detection was fully
automated and tested in Python 3.6 and Mat-
lab (Matlab Version R2018a). To overcome the
limitations of conventional rotationally invariant
filters, which detect round-shaped structures but
no cell structures with different shapes, we ad-
vanced the previous implementations of kernel-
based cell nuclei detection detection adding S
- Filter Bank (S) and LM - Filter Bank (LM)
((21),(29),(19)). Both filter banks are rotation-
ally invariant and enabled the identification of
more complex non-circular geometries. More-
over, the threshold value is not determined de-
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Figure 4: Results of the calculation of Cohen’s kappa  show large differences for ATDAhisto and ICS. The
calcuation was based on all N=64 samples sub-divided in DAPI (A), GFAP (B), and Ibal (C). Horizontal
lines separate the categories of Altmann (Table 1).AIDAhisto presents a highly significant improvement to
ICS with p < 0.001 (DAPI p=>5.76e-06, GFAP p= 6.86e-13, Ibal p=3.07e-13) and the median remained
steady in the category marked as ”Good”. The confusion matrices show the comparison of the Ibal/DAPI
countings with and without additional validation based on the detected cell nuclei. The cell nuclei position
was used to delete Ibal cells with no cell nuclei in radius r. Cell nuclei validation improved Ibal counting
for all measures (TP/FP and Fi-Score increased, FN/FP rate decreased (D).

pending on the input of the user, but automati-
cally calculated based on the input image by an
established method. This allows batch process-
ing of a large amount of data in a very short
time.

In a comprehensive validation study, we could
show that AIDAhisto outperforms other cell
counting software using Ibal and GFAP stain-
ings in terms of accuracy and reliability for
cell nuclei and cell structures despite different
cell body geometries and pixel brightness due
to the variable immunostaining and microscopy
procedures. Compared to two expert raters,
AIDAhisto provided the same accuracy for the
detection of antibody-stained astrocytes and im-
mune cells in the mouse brain. Furthermore, by
using the highly accurate cell nuclei detection by
AIDAhisto, we implemented a feature to correct
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the immunostaining results. This way only cells
with cell nuclei will be counted in the immunos-
taining results.

Complex methods and architectures of pattern
recognition for the automatic detection and
classification of cells have become increasingly
popular in recent years and show advantages
over manual image processing methods ((31),
(7), (26)). However, compared to sophisti-
cated methods, like deep neuronal networks,
AIDAhisto is a single system solution. Expen-
sive hardware and large amounts of data for
training procedures are not necessary. Instead,
a single computer can evaluate the image data
in minutes. A prerequisite for efficient and reli-
able cell detection is image quality and a minimal
amount of image artifacts, blurring, contrast in-
homogeneity, or variable intensity. AIDAhisto



was successfully tested on stitched whole mouse
brain slices imaged using various microscopes
and different image resolutions without differ-
ences in cell detection. AIDAhisto detects reli-
ably various shapes of cell nuclei and cells. Here,
we performed the extensive quantitative compar-
ison only for GFAP and Ibal as they represent a
large variety of cellular shapes similar to a vari-
ety of neurons. In other examples for immunos-
taining of neurons on brain and spinal cord tissue
as well as viral tracing, we could show that qual-
itatively, AIDAhisto reliably detects cell nuclei
and cells. One major limitation of AIDAhisto
is the cell counting in 2D only, thus the algo-
rithm is not capable of discriminating cells in
z-direction, such as in large z-stacks or 3D light
sheet microscopy With the offered tool, we hope
to provide a simple solution for non-expert users
to achieve an accurate atlas-based cell counting
and facilitate a more broader comparison of ex-
perimental approaches in preclinical studies of
human brain disorders in the mouse model.
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Virus

Figure 5: Qualitative results of common stainings in
the mouse brain and spinal cord. Cell nuclei in all ex-
periments counterstained with DAPI (blue). White
boxes indicate zoom area. DCX (Doublecortin, red)
in the subventricular zone of the lateral ventricle.
Neuronal nuclei (NeulN) in the posterior part of the
hippocampus and the spinal cord. Expression of td-
Tomato in cortex layer 5 pyramidal neurons targeted
by injection of an Adeno-associated virus.



for which other atlas tools have been proposed
recently. Therefore, similar to other 2D count-
ing tools including stereology, overcounting can
appear when adjacent slices are being analyzed
(a 50 pm cell might be counted twice in two
adjacent 20 pm slices) ((15)). For selected
brain slices, when no combined serial slicing
and staining is available, AIDAhisto results can
be compared to whole brain atlas-registered
in-vivo imaging features, which provides a direct
comparison of imaging to cellular features in the
same atlas space ((23)).
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